二维码

大数据之管理革命 - 数据结构 - 机器学习

1149 人阅读 | 时间:2021年01月15日 01:20
大数据之管理革命 - 数据结构 - 机器学习 #daohang ul li t,.reed .riqi,a.shangg,a.xiatt,a.shangg:hover,a.xiatt:hover,a.shang,a.xiat,a.shang:hover,a.xiat:hover,.reed-pinglun-anniu,span.now-page,#daohangs-around,#caidan-tubiao,#daohangs,#daohangs li,#btnPost{background-color:#D10B04;} .dinglanyou1 h3{border-bottom:3px solid #D10B04;} #dibuer{border-top:2px solid #D10B04;}.cebianlan .rongqi h3{border-bottom:1px solid #D10B04;} #edtSearch{border:1px solid #D10B04;} #daohang .zuo ul li{border-right:1px solid #;} #daohang ul li t a{border-top:1px solid #;border-right:1px solid #D10B04;} #daohang ul li t a:hover{border-right:1px solid #;} #daohang .you ul li a:hover,#daohang .zuo ul li a:hover,.reed-pinglun-anniu:hover{background-color:#;} a:hover,.reed h6 a:hover,#dibuer a:hover,.reed .riqiding,.cebianlan .rongqi li a:hover,#pinglun-liebiao ul.fubens li.depth-1 dl dd span.shu a,#pinglun-liebiao ul.fubens li.depth-1 dl dd span.huifuliuyan a:hover,.reed-biaoti h6 span{color:#D10B04;} .reed .kan a{color:#0A0AF5;}.reed .kan a:hover{color:#D10101;} @media screen and (max-width:1492px){a.shang,a.xiat{background:none;} a.xiat:hover,a.shang:hover{background-color:#f9f9f9;background-image:none;text-decoration:none;}} var _hmt = _hmt || [];(function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?b19db5ba3b437a9e8698d2bc8fc64334"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s);})(); var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?b19db5ba3b437a9e8698d2bc8fc64334"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?2d748c9763cfc72fb7d1ccab29f0770d"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })(); var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?f6d451f3f1be23f3abf240c64c469c1b"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

当前位置:首页 » 大数据精品文章 » 正文

(function() { var s = "_" + Math.random().toString(36).slice(2); document.write('
'); (window.slotbydup = window.slotbydup || []).push({ id: "u3646201", container: s }); })();
(function() { var s = "_" + Math.random().toString(36).slice(2); document.write('
'); (window.slotbydup = window.slotbydup || []).push({ id: "u3646162", container: s }); })();

大数据之管理革命

1159 人参与  2018年10月16日 13:02  分类 : 大数据精品文章  评论

安德鲁·麦卡菲(Andrew McAfee)

埃里克·布林约尔松(Erik Brynjolfsson) | 文

程明霞 丨 译

挖掘全新的海量信息流将为公司业绩带来革命性 的提升,前提是:你要改变制定决策的文化。管理大师戴明(W. Edwards Deming)与德鲁克在诸多思想上都持对立观点,但“不会量化就无法管理”的理念却是两人智慧的共识。这一共识足以解释近年来的数字大爆炸为何无比重 要。简而言之,有了大数据,管理者可以将一切量化,从而对公司业务尽在掌握,进而提升决策质量和业绩表现。

看看零售业吧。实体店的书商们也能追踪图书销路,哪些卖掉了哪些还没有。如果他们设计了“客户忠诚计划”, 还能将某些图书的销售与消费者个人联系起来。但仅此而已。而一旦购物行为移至线上,店主们对顾客的了解会相当惊人:卖家不仅能追踪顾客买了什么产品,还知 道他们查看了其他哪些产品,他们如何浏览网站,他们在多大程度上被促销活动、其他买家对产品的评论与页面布局所影响;卖家还可以交叉对比个体消费者之间与 群体消费者之间的相似性等等。在此之前,卖家已经开发了一套运算方法,推测哪些书目是哪些用户乐意阅读的——每当用户忽略一个图书推荐,这种算法就会更优 化一步。传统零售商是没法轻而易举获得这些信息的,他们的销售行为既孤立又盲目。所以,亚马逊把那么多实体店踢出局一点也不意外。

关于亚马逊那些耳熟能详的故事遮蔽了它的真正实力——这些先天带有数字基因的公司所能做到的事,是上一代商 业领袖梦寐以求的。但实际上,大数据的潜力也可以帮助传统企业实现转型,甚至帮它们获得更好的机会提论会有更多细节证明,这场大数据的革命远比之前的“数 据分析”要强大得多。企业因此可以做精准地量化和管理,可以做更可靠的预测和更明智的决策,可以在行动时更有目标更有效率;而且这些都可以在一直以来由直 觉而不是数据和理性主宰的领域实现。

随着大数据之工具与理念的不断传播,许多深入人心的观点将被撼动,比如经验的价值、专业性与管理实践。各个行业的商业领袖都会看清运用大数据究竟意味着什么:一场管理革命。

但是,伴随商业世界其他一些深刻的变革,公司向“大数据驱动”转型必将遭遇巨大的挑战,它需要公司领导层拥有一手的数字化能力(或者,在其他一些情况下,需要的可能是会放手的领导)。

决策文化变革

大数据的技术挑战显而易见。但其带来的管理挑战更为艰巨——这要从高管团队的角色转变开始。

高价智囊请闭嘴 大数据最至关重要的方面,就是它会直 接影响企业怎样做决策、谁来做决策。在信息有限、获取成本高昂、且没有被数字化的时代,让身居高位的人做决策是情有可原的。因为他们拥有多年累积的经验, 并将观察到的商业模式和组织内部关系内化到了自己的思维与行为中。我们可以给这种决策者和决策过程贴个标签:直觉主义。这些人描绘的未来蓝图——会发生什 么事情、事情该怎样解决、因此该如何做规划等——全部基于他们的个人观点。

尤其那些做重大决策的人,都是组织内典型的位高权重的人,要不然就是高价请来的拥有专业技能和显赫履历的外 部智囊。大数据领域的人认为很多公司仍然维持着这种方式——依赖“HiPPO”做决策。所谓HiPPO,就是那些高薪人士的观点(the highest-paid person's opinion)。

的确有一些资深高管忠实于数据,一旦数据否定了他们的直觉,他们会抛弃个人观点。但是我们相信,在今天的整 个商业世界中,人们仍然更多依赖个人经验和直觉做决策,而不是基于数据。我们在研究中设计了一个“五点复合标尺”,用来测量一家企业究竟在多大程度上是数 据驱动型的。32%的回应者认为他们的公司只具备其中的一两点或两三点。

让数据做主 有志于引领企业实现大数据转型的高管们, 可以从两个最简单的技巧开始。首先,要养成习惯问:“数据怎么说?”每当遇到重大决策的时候,要紧跟着这个问题进一步问:“这些数据从哪儿来的?”“这些 数据能得出什么分析?”“我们对结果有多大信心?”(员工能从高管的这种行为中迅速接收到信息。)其次,他们要允许数据做主;当员工看到一位资深高管听任 数据推翻了他的直觉判断——这将是改变一家公司决策文化的最大力量。

在确认哪些问题需要解决的阶段,毫无疑问,专业技能仍然至关重要。传统领域的专家,因为对所在行业的深刻理 解,可以清楚地识别机遇与挑战。比如PASSUR公司一直极力从全美主要的航空公司挖人,越多越好。因为拥有丰富的航空业运营知识,在PASSUR寻找下 一个市场机会的时候,这些人的价值不可估量。

随着大数据运动的推进,这些传统领域的专家也会转变角色。他们的价值不在于提供类似那些高薪人士的“直觉主义”的答案,而在于他们善于发现真问题。“电脑有什么用呢?它们只知道给答案。”当天才画家毕加索这么说的时候,他一定很怀念那些传统领域的专家。

五大管理挑战

大数据转型并不是万能的,除非企业能成功应对转型过程中的管理挑战。以下五个方面在这一过程中尤为重要。

领导力 那些在大数据时代获得成功的企业,并不是简单 地拥有更多或者更好的数据,而是因为他们的领导层懂得设计清晰的目标,知道自己定义的成功究竟是什么,并且找对了问题。大数据的力量并不会抹杀对远见与人 性化洞察的需求。相反,我们仍然需要这种领导者——他们能抓住某个绝好的机会、懂得如何开拓市场、用自己的创意提供那些相当新奇的产品和服务,并且巧舌如 簧地勾勒出一幅激动人心的前景,说服下属们激情澎湃地为此拼命工作,最终成功赢得顾客。未来十年获得成功的企业,其领导者必然具备以上特质,与此同时推进 了公司决策机制的转型。

人才 随着数据越来越廉价,实现大数据应用的相关技术 和人才也变得越来越昂贵。其中最紧迫的就是对数据科学家和相关专业人士的需求,因为需要他们处理海量的信息。统计学很重要,但是传统的统计学课程几乎不传 授如何运用大数据的技能。尤其需要的能力是将海量数据集清理并系统化,因为各种类型的数据很少是以规整的形态出现的。视觉化工具和技术的价值也将因此突 显。随着数据科学家的涌现,新一代的电脑工程师必须能够处理海量数据集。而设计数据试验的技能,则会非常有助于弥补数据呈现的复杂关系与因果之间的鸿沟。 除此之外,那些最优秀的数据科学家还需要掌握商业语言,帮助高管把公司面临的挑战变为大数据可以解决的形式。毫无疑问,这类人才炙手可热,很难找到。

技术 处理海量、高速率、多样化的大数据工具,近年来 获得了长足的改进。整体而言,这些技术已经不再贵得离谱,而且大部分软件都是开源的。Hadoop,这个目前最通用的平台,就整合了实体硬件和开源软件。 它接收涌入的数据流并将其分配至很便宜的存储盘,同时它也提供分析数据的工具。尽管如此,这些技术需要的一整套技能对大部分企业的IT部门来说都是全新 的,他们需要努力将公司内外所有相关的数据都整合起来。只有技术远远不够,但技术是整个大数据战略中不可或缺的部分。

决策 一家高效的公司通常把信息和相关的决策权统一在 一起。而在大数据时代,信息的产生与流通,以及所需人才都不再是以往那样了。精明的领导者会创造一种更灵活的组织形式,尽量避免“自主研发综合症”,同时 强化跨部门合作:收集信息的人要提供正确的数据给分析数据和理解问题的人,同时,他们要和掌握相关技术、能够有效解决问题的人并肩工作。

文化 大数据驱动的公司要问自己的第一个问题,不是 “我们怎么想?”而应该是“我们知道什么?”这要求企业不能再跟着感觉走。很多企业还必须改掉一个坏习惯:名不副实的大数据驱动。我们发现很多这样的企 业,最常见的表现是,高管们明明还是按传统方式做决定——以HiPPO,那些高薪人士的意见为主,却拿出一份香艳的数据报告支撑自己的决定是多么英明。其 实那不过是分配下属四处寻找的专为这个决定做辩护的一堆数字。

毫无疑问,成功的路上荆棘密布。数据科学家不够多;技术不只新,甚至新奇;把各种关联当作因果关系,由数据得到误导性的模式;文化转型的挑战更是艰巨,比如,对隐私的关切已经越来越突出。但是,大数据在技术和商业领域的卓越表现势不可挡。

证据一目了然:大数据驱动下的决策更高明。高管们要么拥抱这一现实,要么卷铺盖走人。在各个领域中,企业只有找到将数据科学与传统技能完美结合的方式,才能打败对手。我们不能说,所有的赢家都会将大数据用于其决策制定。但数据告诉我们,这样确实胜算最大。


安德鲁·麦卡菲是麻省理工学院数字商业中心的首席科学家,著有《企业2.0》(Enterprise 2.0)一书,哈佛商学院出版社2009年出版。


来源:我是码农,转载请保留出处和链接!

本文链接:http://www.54manong.com/?id=1121

(function() { var s = "_" + Math.random().toString(36).slice(2); document.write('
'); (window.slotbydup = window.slotbydup || []).push({ id: "u3646208", container: s }); })();
(function() { var s = "_" + Math.random().toString(36).slice(2); document.write('
'); (window.slotbydup = window.slotbydup || []).push({ id: "u3646147", container: s }); })();
window._bd_share_config={"common":{"bdSnsKey":{},"bdText":"","bdMini":"2","bdPic":"","bdStyle":"0","bdSize":"16"},"share":{},"image":{"viewList":["qzone","tsina","tqq","renren","weixin"],"viewText":"分享到:","viewSize":"16"},"selectShare":{"bdContainerClass":null,"bdSelectMiniList":["qzone","tsina","tqq","renren","weixin"]}};with(document)0[(getElementsByTagName('head')[0]||body).appendChild(createElement('script')).src='http://bdimg.share.baidu.com/static/api/js/share.js?v=89860593.js?cdnversion='+~(-new Date()/36e5)];
大数据技术与应用  

微信号:qq444848023    QQ号:444848023

加入【我是码农】QQ群:864689844(加群验证:我是码农)

<< 上一篇 下一篇 >>
(function() { var s = "_" + Math.random().toString(36).slice(2); document.write('
'); (window.slotbydup = window.slotbydup || []).push({ id: "u3646186", container: s }); })();
(function() { var s = "_" + Math.random().toString(36).slice(2); document.write('
'); (window.slotbydup = window.slotbydup || []).push({ id: "u3646175", container: s }); })();
搜索

网站分类

标签列表

最近发表

    (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https'){ bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else{ bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })();

全站首页 | 数据结构 | 区块链| 大数据 | 机器学习 | 物联网和云计算 | 面试笔试

var cnzz_protocol = (("https:" == document.location.protocol) ? "https://" : "http://");document.write(unescape("%3Cspan id='cnzz_stat_icon_1276413723'%3E%3C/span%3E%3Cscript src='" + cnzz_protocol + "s23.cnzz.com/z_stat.php%3Fid%3D1276413723%26show%3Dpic1' type='text/javascript'%3E%3C/script%3E"));本站资源大部分来自互联网,版权归原作者所有!

jQuery(document).ready(function($){ /* prepend menu icon */ $('#daohangs-around').prepend('
'); /* toggle nav */ $("#caidan-tubiao").on("click", function(){ $("#daohangs").slideToggle(); $(this).toggleClass("active"); }); });

取消

感谢您的支持,我会继续努力的!

扫码支持
扫码打赏,你说多少就多少

打开支付宝扫一扫,即可进行扫码打赏哦

©著作权归作者所有:来自ZhiKuGroup博客作者没文化的原创作品,如需转载,请注明出处,否则将追究法律责任 来源:ZhiKuGroup博客,欢迎分享。

评论专区
  • 昵 称必填
  • 邮 箱选填
  • 网 址选填
◎已有 0 人评论
搜索
作者介绍
30天热门
×
×
关闭广告
关闭广告
本站会员尊享VIP特权,现在就加入我们吧!登录注册×
»
会员登录
新用户注册
×
会员注册
已有账号登录
×