书名:《智能时代》
作者:吴军
格式:EPUB, HTMLZ, PDF
路径:点击打开
出版:JohnWan
排序作者:吴军
排序书名:《智能时代》
日期:09 12月 2018
uuid:acca3c33-654d-46d3-8a5c-19955a8e4a7e
id:506
修改日期:09 12月 2018
大小:13.38MB
语言:中文
AlphaGo在第一盘出人意料地轻松获胜。当然,大部分人在赞誉AlphaGo水平的同时,依然认为这可能是李世石在试探计算机而已,毕竟那是五盘棋的比赛,用一盘棋试探自己毫不了解的对手未尝不是明智之举。但是当AlphaGo在第二盘获得连胜并且下出了很多人类预想不到的好棋后,对机器智能持怀疑态度的聂卫平等人,都对它产生了敬意。在AlphaGo获得第三盘胜利之后,很多超一流的棋手都渴望和它一战,希望以此检验自己的水平,并且能够提高技艺。虽然李世石在第四盘抓住AlphaGo的一个失误打了一个漂亮的翻身仗,但是AlphaGo在最后一盘稳稳地控制着局面,直到胜利。可以讲在那一次人机大战之后,围棋界对机器智能从怀疑变成了顶礼膜拜,大家都意识到,按照AlphaGo在过去几个月里的进步速度,只要Google愿意继续进行科研,很快人类所有的围棋高手都无法和它过招了。 计算机之所以能战胜人类,是因为机器获得智能的方式和人类不同,它不是靠逻辑推理,而是靠大数据和智能算法。在数据方面,Google使用了几十万盘围棋高手之间对弈的数据来训练AlphaGo,这是它获得所谓的“智能”的原因。
数据的范畴远比我们通常想象的要广得多。人类认识自然的过程,科学实践的过程,以及在经济、社会领域的行为,总是伴随着数据的使用。从某种程度上讲,获得和利用数据的水平反映出文明的水平。在电子计算机诞生、人类进入信息时代之后,数据的作用越来越明显,数据驱动方法开始被普遍采用。如果我们把资本和机械动能作为大航海时代以来全球近代化的推动力,那么数据将成为下一次技术革命和社会变革的核心动力。接下来,我们将在这样一个高度上来理解大数据,以及由它带来的全球智能革命。
计算机下棋和回答问题,体现出大数据对机器智能的决定作用。我们在后面会看到很多各种各样的机器人,比如Google自动驾驶汽车、能够诊断癌症或者为报纸写文章的计算机,它们不需要像科幻电影里的机器人那样长着人形,但是它们都在某个方面具有超过人类的智能。在这些机器人的背后,是数据中心强大的服务器集群,而从方法上讲,它们获得智能的方法不是和我们人一样靠推理,而更多的是利用大数据,从数据中学习获得信息和知识。如今,这一场由大数据引发的改变世界的革命已经悄然发生,我们在后面的几章会更深入地介绍它。这次技术革命的特点是机器的智能化,因此我们称之为智能革命也毫不为过。
我们对大数据重要性的认识不应该停留在统计、改进产品和销售,或者提供决策的支持上,而应该看到它(和摩尔定律、数学模型一起)导致了机器智能的产生。而机器一旦产生和人类类似的智能,就将对人类社会产生重大的影响。毫不夸张地讲,决定今后20年经济发展的是大数据和由之而来的智能革命。
Google和很多互联网公司之所以能够取得成功,不仅仅是靠技术,靠数据,更是靠采用了大数据时代的方法论,或者说大数据思维。作为数据公司,它们在做事情的方法上有着和传统工业公司不同的思维方式。相对来讲这些公司很少花大量的时间和资源来寻找确定的因果关系,而是通过从大量数据中挖掘相关性,直接用于产品,因此它们给外界的感觉是产品更新非常快。大数据思维对Google等公司的帮助,我们会在后面的章节里进一步介绍。
很多时候,落后与先进的差距,不是购买一些机器或者引进一些技术就能够弥补的,落后最可怕的地方是思维方式的落后。西方在近代走在了世界前列,很大程度上靠的是思维方式全面领先。
机械思维曾经是改变了人类工作方式的革命性的方法论,并且在工业革命和后来全球工业化的过程中起到了决定性的作用,今天它在很多地方依然能指导我们的行动。如果我们能够找到确定性(或者可预测性)和因果关系,这依然是最好的结果。但是,今天我们面临的复杂情况,已经不是机械时代用几个定律就能讲清楚的了,不确定性,或者说难以找到确定性,是今天社会的常态。在无法确定因果关系时,数据为我们提供了解决问题的新方法,数据中所包含的信息可以帮助我们消除不确定性,而数据之间的相关性在某种程度上可以取代原来的因果关系,帮助我们得到我们想知道的答案,这便是大数据思维的核心。大数据思维和原有机械思维并非完全对立,它更多的是对后者的补充。在新的时代,一定需要新的方法论,也一定会产生新的方法论。
从工业革命开始,几次主要的技术革命都遵循相似的规律。首先,是大部分现有产业加上新技术等于新产业。或者说原有产业需要以新的形态出现。其次,并非每一家公司都要从事新技术产品本身的制造,更多时候它们是利用新技术改造原有产业。这次以大数据为核心的智能革命也不例外,我们将看到它依然会延续这两个特点。每次技术革命都会诞生新的思维方式和商业模式,企业只有在思维上跟上新的时代,才能在未来的商业中立于不败之地。
大数据在今天这个时间点爆发,是各种技术条件具备的结果。但是,要让大数据真正发挥巨大作用,让计算机变得更聪明,还有很多技术挑战需要应对。
大数据的数据量大、维度多、数据完备等特点,使得它从收集开始,到存储和处理,再到应用,都与过去的数据方法有很大的不同。因此,使用好大数据也需要在技术和工程上采用与过去不同的方法,尤其是要改变我们过去的很多思维定式。大数据和机器智能的发展和应用过程,还会带来很多新的技术挑战,需要解决很多技术上的难题,比如对数据安全的考虑,对隐私保护的考虑等。有些问题虽然在大数据之前并不重要,但是今天在大数据时代它们变得非常突出而且敏感,使得我们不得不认真考虑。
我们已经向大家展示了大数据能给我们带来的诸多好处,但是这些好处的获得需要有扎实的技术和工程基础做保障。在今后,任何一个能够提供某些大数据关键技术的公司和个人,在未来的智能革命中,都将有大展宏图的机会。
大数据将导致我们社会的产业升级和变迁。不过,如果对比每一次产业革命前后产业的变化,你就会发现其实人类很多基本的需求并没有变,只是采用了新技术后,新产业会取代旧产业满足人类的需求。在技术革命时,固守旧产业是没有出路的。
机器智能会给人类带来一个终极问题:既然什么事情都可以让机器来做,而且还比人做得好,那么人类怎么办?我们将在下一章中重点讨论这个问题。
大数据导致机器革命的到来,这对未来社会的影响不仅仅存在于经济领域,而是全方位的。尽管总体上这些影响是正面的,从长远看会使我们未来的社会变得更好;不过,和以往的技术革命一样,智能革命也会带来很多负面的影响,特别是在它发展的初期,而这些影响可能会持续很久。
智能交通不仅对通勤有好处,也方便市政当局优化和调整全市整体的交通状况。首先,可以通过每天的交通情况制定拼车车道120的使用时间,引导大家尽可能地分散出行的时间和使用的道路。在硅谷地区,个别车道在交通高峰时期是自动收费的,这个措施实行以后,不少通勤的人开始调整自己的出行时间和办事的次序。当然,目前硅谷地区这些车道的控制还没有利用大数据,如果使用,效果会更加明显。
其次,利用大数据管理交通可以根据实时流量和对未来流量的预测,调整交通信号灯的时间。目前世界上大部分城市的交通信号灯互相并不联通,而时间控制的策略总体上是固定的。我们经常看到在十字路口,另一个方向的道路已经没有了汽车而信号灯还是绿的,而自己的方向堵了一条长龙。
任何一次技术革命,最初受益的都是发展它、使用它的人,而远离它、拒绝接受它的人,在很长的时间里都将是迷茫的一代。在智能革命到来之际,作为人和企业无疑应该拥抱它,让自己成为那2%的受益者;而作为国家,则需要未雨绸缪,争取不要像过去那样每一次重大的技术革命都伴随半个多世纪的动荡。
我们还没有经历过机器在智能上全面超越人类的时代,我们需要在这样的环境里学会生存。这将是一个让我们振奋的时代,也是一个给我们带来空前挑战的时代。
评论专区